Risk Classification with an Adaptive Naive Bayes Kernel Machine Model.

نویسندگان

  • Jessica Minnier
  • Ming Yuan
  • Jun S Liu
  • Tianxi Cai
چکیده

Genetic studies of complex traits have uncovered only a small number of risk markers explaining a small fraction of heritability and adding little improvement to disease risk prediction. Standard single marker methods may lack power in selecting informative markers or estimating effects. Most existing methods also typically do not account for non-linearity. Identifying markers with weak signals and estimating their joint effects among many non-informative markers remains challenging. One potential approach is to group markers based on biological knowledge such as gene structure. If markers in a group tend to have similar effects, proper usage of the group structure could improve power and efficiency in estimation. We propose a two-stage method relating markers to disease risk by taking advantage of known gene-set structures. Imposing a naive bayes kernel machine (KM) model, we estimate gene-set specific risk models that relate each gene-set to the outcome in stage I. The KM framework efficiently models potentially non-linear effects of predictors without requiring explicit specification of functional forms. In stage II, we aggregate information across gene-sets via a regularization procedure. Estimation and computational efficiency is further improved with kernel principle component analysis. Asymptotic results for model estimation and gene set selection are derived and numerical studies suggest that the proposed procedure could outperform existing procedures for constructing genetic risk models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier

With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...

متن کامل

In silico prediction of anticancer peptides by TRAINER tool

Cancer is one of the causes of death in the world. Several treatment methods exist against cancer cells such as radiotherapy and chemotherapy. Since traditional methods have side effects on normal cells and are expensive, identification and developing a new method to cancer therapy is very important. Antimicrobial peptides, present in a wide variety of organisms, such as plants, amphibians and ...

متن کامل

A Bayesian beta kernel model for binary classification and online learning problems

Recent advances in data mining have integrated kernel functions with Bayesian probabilistic analysis of Gaussian distributions. These machine learning approaches can incorporate prior information with new data to calculate probabilistic rather than deterministic values for unknown parameters. This paper extensively analyzes a specific Bayesian kernel model that uses a kernel function to calcula...

متن کامل

Modified Mahalanobis Taguchi System for Imbalance Data Classification

The Mahalanobis Taguchi System (MTS) is considered one of the most promising binary classification algorithms to handle imbalance data. Unfortunately, MTS lacks a method for determining an efficient threshold for the binary classification. In this paper, a nonlinear optimization model is formulated based on minimizing the distance between MTS Receiver Operating Characteristics (ROC) curve and t...

متن کامل

Applying Different Machine Learning Models to Predict Breast Cancer Risk

In this paper, we apply five machine learning models (Logistic Regression, Naive Bayes, LinearSVC, SVM with linear kernel and Random Forest) and three feature selection techniques (PCA, RFE and Heatmap) in one of the key procedures for breast cancer diagnosis. Using the biopsy cytopathology data with 30 numerical features, we achieve a high accuracy of 97.8%. We further compare performances of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Statistical Association

دوره 110 509  شماره 

صفحات  -

تاریخ انتشار 2015